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Abstract: Artificial intelligence (Al) tends to be extensively used to develop reliable, fast,
and inexpensive tools for authenticity control. Initially applied for food differentiation
as an alternative to statistical methods, Al tools opened a new dimension in adulteration
identification based on images. This comprehensive review aims to emphasize the main
pillars for applying Al for food authentication: (i) food classification; (ii) detection of subtle
adulteration through extraneous ingredient addition/substitution; and (iii) fast recognition
tools development based on image processing. As opposed to statistical methods, Al
proves to be a valuable tool for quality and authenticity assessment, especially for input
data represented by digital images. This review highlights the successful application of
Al on data obtained through laborious, highly sensitive analytical methods up to very
easy-to-record data by non-experimented personnel (i.e., image acquisition). The enhanced
capability of Al can substitute the need for expensive and time-consuming analysis to
generate the same conclusion.

Keywords:
adulteration; image processing

food authentication; processing strategies; artificial intelligence; food

1. Introduction

Because of the significant natural variability of food commodities and also the insertion
on the market of products that have passed many times through a subtle and hard-to-
detect adulteration process, the development of reliable strategies for counterfeit detection
represents a challenge and involves a huge amount of data impossible to handle by human
processing capabilities alone. For this reason, the involvement of supervised statistical tools
and, more recently, artificial intelligence (Al) for the development of reliable instruments
for the detection of sophisticated adulterations has become an important strategy. The
increased demand for the application of the above-mentioned data processing strategies is
in strong connection with the new tendency regarding the application of rapid and green
analytical methods, as they are simultaneously encouraged by the development of portable
market equipment [1]. Moreover, during recent years, the enhanced capabilities of Al to
extract subtle and meaningful information from a huge amount of data and to generate
well-grounded assessments has transcended limits with the development of reliable tools
for food quality and authenticity verdicts based on digital images, hyperspectral data,
thermographic images, etc. [2,3].

The initial use of Al for the development of authentication tools went hand in hand
with advanced supervised statistical strategies, as they were used as an alternative to the
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latest or for validation purposes. This is because, in this early stage, Al was especially
applied for the development of classification models for food differentiation with respect
to several label attributes, like the geographical origin, botanical source, animal species,
or production year. It was proven through several studies that the application of either
advanced statistical methods or Al resulted in the achievement of comparable recognition
models in terms of accuracy [4,5]. Afterwards, the potential of Al for food fraud detection—
even for common frauds, like the addition of sugar in fruit juices [6], or for ones that are
very subtle and difficult to detect, as is the case of partial substitution of a food variety with
a cheap one, like undeclared oil or honey mixtures [7-9]—was recognized and transformed
through effective tools. During the last few years, a step forward was made through
employment of the enhanced capabilities of Al to interconnect the provided data and to
construct recognition models based on images, with these provided data recorded through
analytical procedures or derived from visual files [10,11].

The recognized applications of Al in the development of reliable tools for food authen-
tication, given the provided advantages in terms of rapidity, in which a huge volume of data
can be processed and interconnected to extract meaningful conclusions in the entire field
of food production and control, have led to the investigation of this potential by distinct
research groups. Many of these efforts were recently acknowledged in well-documented
review papers [1,2,12,13] in which several aspects of the potential of using Al in the food
industry were presented. Notably, the work of Medina et al. highlighted the efficiency
of Al-based methods in corroboration with recently introduced rapid and non-invasive
analytical methods (e.g., spectroscopic techniques) in comparison with state-of-the-art
analytical approaches [1].

The published papers that present the limitations of the current chemometric ap-
proaches and highlight the great emerging potential of applying deep learning (DL) com-
bined with spectroscopic techniques for quality evaluation in terms of variety identification,
geographical origin detection, and adulteration recognition of food and agro-products were
summarized by Zhang and co-workers [12]. In their view, the benefits of DL arise from the
independence from human input and from the improved precision and large-scale appli-
cability. Another research group discussed, based on the published data in the literature,
the great potential of using DL as a data analysis tool in quality detection and recognition
in the food domain, indicating that it outperforms conventional learning-based methods
and has the ability to automatically generate features that are better than the handcrafted
ones, but it has limitations, such as long training times due to the large size of the original
data [3].

Meenu et al. assessed the recent advancements in using digital image processing
(DIP) for predicting the quality of various food products as a need to increase commercial
exploitation, which cannot be achieved through classic computer vision algorithms [2]. In
their view, the development of mobile applications integrating DIP tools based on DL offers
new opportunities in food control. The application of convolutional neural networks (CNN)
as deep feature extractors for effectively and efficiently detecting and analyzing complex
food matrices was presented and discussed in another review paper that pointed out the
improvements that such deep learning methods can bring over conventional machine
learning (ML) algorithms, presenting the benefits of applying them in future studies for
food detection and analysis [13].

Against the already published review papers, the aim of the present comprehensive
review was to synthesize the reported results in the literature in which Al was applied to
support the food chain, starting from the incipient purposes for which the applicability
of Al was prospected until nowadays, when a new dimension in the food control field
is opening based on the enhancement of data interconnections provided by Al Thus,
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this review is structured to point out the main contributions of Al in the development of
reliable tools for food control regarding (i) food differentiation with respect to different
label characteristics; (ii) adulteration detection through total or partial substitution; and
(iii) development of fast recognition tools for the food industry based on image processing
(Figure 1).
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Figure 1. Preview of the main applications of Al in food fraud control.

For this purpose, we conducted a comprehensive literature search utilizing the Web of
Science and Google Scholar databases. The primary aim was to provide an overview of the
application of Al to solve several problems that occur along the food chain, like the false
declaration of label attributes (e.g., geographical, botanical or animal origin, production
year, production and condition technologies, and freshness level) or adulterations with
extraneous substances or cheaper varieties, and also to compare the efficiency of Al with
that provided by classical chemometric approaches in terms of similarities, advantages,
and limitations when applicable.

Based on these premises, an in-depth literature search was undertaken using various
keyword combinations. More specifically, on the Web of Science platform, our initial query
was defined as T = (food AND (artificial intelligence OR ai OR machine learning OR ml OR
deep learning OR dl OR statistical OR chemometrics) AND (classification OR authenticity
OR adulteration)), where T refers to the title, author keywords, or abstract tags.

Because of the available literature distribution concerning the application of Al in food
control and also based on the assumed main directions we followed, five food matrices
are discussed in this work. These are honey, oil, fruit juices, dairy products, and meat. It
was not surprising that all matrices that benefited from the highest interest from researcher
groups belong to the ten food commodities most susceptible to fraud, according to a report
published by the European Parliament [14].

After the selection of the matrices of interest, the search domain was restricted based
on additional keywords, such as the food commodities’ names (e.g., honey) or analytical
technique names.

2. A General Overview of Al in Food Authenticity Assessment

With a widely recognized applicability in numerous fields owing to its capacity in
improving automation, productivity, and connectivity and with its important role within
Industry 4.0, Al has also become, in recent years, an increasingly utilized technology in food
authenticity assessment [15,16]. Its ability to process large volumes of complex, multivariate
data and to extract meaningful markers and patterns has made it particularly suitable for
numerous applications, such as origin verification or adulteration detection for various
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food matrices, facilitating efficient, rapid, non-destructive, and on-site investigations for
solving fraud problems.

At a theoretical level, Al refers to a domain within the general field of computer science
that comprises computational systems designed to mimic human cognitive functions such
as learning, acting logically, reasoning, or problem solving [17]. Within the scope of food
authenticity assessment, Al is most often implemented through ML algorithms, which
refer to the development of system models that learn, from labeled or unlabeled training
datasets, to perform specific tasks through a process that implies the improvement of
their performance by experience [18]. In supervised learning, the model is trained using
labeled input data that enables generalization, which subsequently allows the prediction
of unknown input instances [18]. Algorithms such as artificial neural networks (ANN),
support vector machines (SVM), random forests (RF), or classification and regression trees
(CART) have demonstrated high applicability in classifying food products according to
distinct label attributes or in detecting and quantifying adulteration. Unsupervised learning,
by contrast, implies the development of descriptive models that identify specific patterns in
completely unlabeled training data [19]. Such algorithms (e.g., clustering methods, PCA, or
self-organizing maps—SOMs) are often employed to detect groupings of samples without
prior knowledge of class memberships or to identify outliers.

DL, a branch of ML, has emerged along with the increasing availability of compu-
tational resources, which has facilitated a transition from traditional learning methods
based on linear and kernel techniques to more complex neural structures, often referred
to as deep neural networks. These networks can automatically extract relevant features
from experimental data and effectively model nonlinear relationships, leading to superior
performance in diverse prediction tasks. As a result, DL was found to be particularly
suitable for several applications in the field of food authentication that involve complex
data such as images or spectroscopic fingerprints [20,21].

The reliability of Al-based models developed for specific applications in the field of
food analysis is dependent on a rigorous evaluation of their performance. In the context of
supervised learning, this procedure usually begins with the split of the dataset into training
and testing sets: the training instances are used for constructing the model, while the test
samples allow an unbiased assessment of the performance on unseen data. In the case
when there is a limited number of investigated samples and when the allocation of a subset
of samples solely for testing purposes affects the training or testing data representativeness,
cross-validation is commonly employed as an evaluation and model optimization strategy.
This involves partitioning the dataset into multiple subsets and iteratively testing each one
of them through the development of multiple prediction models [22].

To assess the effectiveness of the models constructed, several metrics can be computed.
For binary classification tasks, performance measures are usually represented by accuracy
(i.e., the proportion of correctly predicted samples); precision (i.e., the proportion of true-
positive samples among the positive predicted samples); sensitivity, frequently also referred
to as recall (i.e., the ratio of true positives to all positive samples); specificity (i.e., the ratio
of true negatives to all negative samples); Fl1-score (i.e., the harmonic mean of precision
and recall); and the area under the receiver operating characteristic curve (AUC), with
each offering insights into different aspects of performance, especially in the case of class
imbalance [23]. In the case of regression problems, the most commonly used metrics
comprise the mean absolute error (MAE) or the mean squared error (MSE) [23].

3. Al as an Effective Tool for Food Classification

The employment of advanced statistical methods in the development of reliable tools
for food differentiation represented a step forward in the food industry, opening new
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possibilities to apply spectroscopic techniques in the construction of reliable differentiation
models [24]. This is because of the very subtle differences that occur from one sample to
another when rapid spectroscopic techniques are used, such as UV-Vis, vibrational, NMR,
etc. Due to these small differences, a characteristic pattern for the samples belonging to
the same group cannot be observed or identified by the human eye, but it can be easily
pointed out using statistical methods. Therefore, due to the involvement of statistical
tools, it became possible to successfully apply, for food authentication purposes, analytical
techniques that are fast, cost-effective, and require a simple or no preparation step. In
this way, the application of green analytical techniques in this field took a step forward.
Statistical methods have been extensively employed in the literature for the development
of food classification models, obtaining high accuracies and being useful in authenticating
food matrices, as shown in Table 1. Even if the statistical methods opened the door for
the so-called “foodomics”, in parallel, in the last 20 years, with noticeable increases in the
last few years, more and more studies involving the application of Al for classification
purposes have been reported (Table 1) [12,25]. The analyzed food matrices in the frame
of the present study, namely honey, oil, fruit juices, dairy products, and meat, are very
complex. Therefore, the detection of subtle compositional differences is difficult to observe,
and statistical tools or Al models can be employed to process large datasets to distinguish
and classify authentic samples.

STATISTICAL METHODS ~ ARTIFICIAL INTELLIGENCE
B =

A O
.I‘
4 @
|\‘$ experimental
' data ’

Figure 2. Comparable performances between the use of advanced statistical methods and Al for food
recognition models development.

Table 1. Selection of research articles related to food authentication with respect to distinct label
attributes through the application of Al or statistical methods.

. Experimental Processing
Product Aim Data Method(s) Performance Ref.
Classifying six varieties of The prediction accuracy of the RF
. . RF,SVM, LDA, model (96.5%) was better than SVM
C‘}]‘:t‘fﬁer};"‘;efa’c(;ﬁj";’é‘?ﬂ?;’)er’ IRMS, ICP-MS CART (91.5%), LDA (88.8%), and [26]
e s andju CART (82.1%)
Discriminating the botanical Sample discrimination was achieved
> origin of Anatolian honey ATR-FTIR PCA, HC P [27]
2 successfully
5 samples
2 Botanical origin prediction of PLS-DA: around 80% accuracy,
smp NIR PLS-DA,SVM  SVM: above 90% accuracy for honey  [28]
honey samples e
classification
Honey authenticity control with .
respect to its geographical and Raman SIMCA, SVM SIMCA n}qdel. provided a better [29]
spectroscopy classification of honeys

botanical origin
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Table 1. Cont.
Product Aim Expeg:::ntal I;::EZ?&% Performance Ref.
Authenticity dete.ction of five GC-MS PCA, HCA, RF RF correctly clasgified.the five types [30]
edible oils of edible oils
multi-
e L parametric Classification of olive oils:
Cle.lss;ym.g Ohﬁe 011.s .sampl.es and time-domain kNENLII{{’FNB’ AUC = 0.95; tracing the regions of [31]
indicating the origin regions NMR ’ origin: mean AUC = 0.71
8 relaxometry
Sensitivity values for Coratina,
e Favolosa, Koroneiki, and Lianolia
Development of classification were 0.78. 0.67. 0.71. 0.93. and 1
models capable of identifying GC-MS XGboost e ! [32]
cultivar origin (Greek or Italian) respectively
Specificity values were 0.93, 0.91, 0.95,
1, and 0.98, respectively
L Discrimination based on sugar
DlSCl‘ll‘l‘llI‘}l?thl‘l betweent aﬁple, content: LDA: 98% CV accurgacy;
" p ea:ErI;(zjge;rgrzi Z ;miieirerry’ HPLC PCA, LDA based on organic acid content: above  [33]
.id frli]it ices y 94% CV accuracy; based on both:
R= ) 100% CV accuracy
= ANN and cluster analysis showed
i Assessment of the origin of fiber optic NIR ~ PLS, ANN, GA, great classification power according [34]
citrus fruits spectroscopy CA to the variety and origin, with an R2
value greater than 0.996
=] Discriminating the degree of heat FTIR PCA, kNN, Model accuracies: 0.97 RF; above [35]
p= treatment applied to milk spectroscopy SVM, RE, LDA 0.9 SVM, kNN; and 0.84 LDA
For the cheese type classification, 0.82
% Classifying the Brazilian artisanal ANN, KNN. RE accuracy obtained for the RF and
2 cheese (BAC) according to the ICP-OES SVI/\/[ LVé) * SVM model; for production region [36]
U type and producing region ! discrimination, all classifiers obtained
ype producing regio sC on, all classifiers o e
perfect accuracy
Fresh and frozen—thawed beef PCA-LDA, The discrimination of fresh and
muscle differentiation REIMS OPLS-DA frozen.—tha.wed meat was achieved in  [37]
real-time in an above 92% accuracy
-t assessment of the geographical origin
g . . . of tenderloin meat samples: LDA
Geographical origin, and animal = 1p\15 1cpvs DA, ANN 91.4% accuracy; ANN above 94%;  [38]

diet differentiation

feeding regime differentiation: ANN
above 97% accuracy

As stated by many authors [4,5], the classification model accuracies were not signif-
icantly improved through the substitution of statistical methods with Al but rather by a

validation of the reliability of the proposed approaches through the achievement of com-

parable results when the two previously mentioned data strategies were used (Figure 2).

Moreover, as each food matrix has its own particularities and has been explored in the

literature through several points of view, separate attention is given in the present paper to

each discussed food commodity in order to better understand the role and which strategy

is the most appropriate for use.

3.1. Honey

Honey is a very complex matrix, containing over 200 compounds, whose concen-

trations can slightly vary and have been proven to have natural variability based on the

botanical and geographical source. The authentication issue is very important, as monoflo-

ral honeys have an increased market value. Because of the matrix complexity, traditional

chemical profiling may not reveal subtle compositional differences. Therefore, statistical
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tools and Al models, particularly those using spectroscopic or chromatographic data, can
learn complex nonlinear patterns in large datasets to distinguish authentic samples. Nu-
merous classification tools, relying on the information achieved through various analytical
techniques, have been reported in the literature for identifying the origin of honey. Ac-
cording to a recent review performed by Tsagkaris et al. [39], among these studies, the
majority aimed at the development of classification models for botanical and geographical
origin assessment, while the most widely applied analytical techniques corresponded to
chromatography, physiochemical analysis, spectroscopic techniques, isotopic and elemental
determinations, and sensory analysis. As analytical techniques such as chromatographic
analysis do not require the application of advanced data processing methods, studies im-
plying the use of isotope and elemental determinations or distinct spectroscopy techniques
in corroboration with statistical and, more importantly for the aim of our review, Al are
further discussed.

Isotope ratios have become a widely recognized method for assessing the honey’s
geographical and botanical provenance [40,41]. Apart from the isotope fingerprint, the
multi-elemental content of honey has been reported in several research studies [42,43] as
valuable information for characterizing the varietal and geographical source of honey. The
majority of the studies that have relied on stable isotope ratios or multi-element deter-
minations illustrated the use of statistical techniques like discriminant analysis [44], soft
independent modeling of class analogy (SIMCA) [41], multivariate analysis of variance [45],
or partial least squares discriminant analysis (PLS-DA) [46] for constructing honey pre-
diction models. However, there have also been studies that proposed the application of
Al for this task. In this context, one of the earliest of such studies is the work of Batista
et al., in which the application of SVM, random forest (RF), and multilayer perceptron was
investigated for recognizing honey harvested in Sao Paulo [47].

The successful application of ANN for geographically differentiating honey based on
the isotope and elemental profile was also investigated in the study of Hategan et al. [48],
which aimed to classify honey with respect to the country of provenance. Chen et al. also
tested the potential of ANN for classifying honey belonging to four varieties, namely acacia,
linden, colza, and vitex, based on 10 elemental concentrations and highlighted the efficiency
of the ANN model as compared to a statistical treatment performed through PLS-DA [46].
The potential given by the association of the elemental composition and ML for classifying
honey with respect to the botanical origin was investigated by Karabagias et al. [45], who
reported a 78.9% accuracy score for this task. A recent research study published by Liu
et al. indicated the effectiveness of applying RF for honey botanical discrimination based
on the association of the isotopic fingerprint and element composition [26]. In this regard,
a much higher accuracy of 96% in predicting honey samples of six botanical varieties was
achieved by the RF model during the testing phase. The reported results also highlighted
that higher classification performances are obtained by applying RF in comparison to SVM
or statistical methods like linear discriminant analysis (LDA).

Currently, attempts are being made to replace analytical methods that require a long
preparation time, are expensive, and therefore involve considerable financial and human
effort with faster and more cost-effective alternatives [29]. In this regard, there is a de-
sire to employ analytical techniques that are based on various types of spectroscopy, like
IR [27,49,50], Raman [29,51], fluorescence [52,53], and NMR [54,55], allowing the classifica-
tion of samples with a precision similar to or even higher than that obtained by traditional
analytical techniques. As data processing strategies, statistical methods seem to be a
more frequent choice compared to Al-based approaches [56], which also benefited from
increased attention when these analytical techniques were employed [28,29,49,52,57,58].
While some studies have highlighted the efficiency of Al-based algorithms such as SVM
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over PLS-DA [28] for the botanical origin assessment and over LDA for honey classification
according to the geographical origin [57], a general conclusion cannot be stated, as there
are studies proving the contrary. For example, in the work of Magdas et al. [29], an indirect
comparison between the ability of statistical (i.e., SIMCA) and ML techniques (i.e., bagged
trees ensemble, SVM, etc.) in discriminating honey samples with respect to the geographi-
cal and botanical origin based on Raman spectroscopy was conducted, highlighting that
SIMCA modeling slightly outperformed the ability of learning-based strategies for this
specific task.

Based on the previously described literature overview concerning honey origin au-
thentication, an overall conclusion regarding the efficiency of Al-based approaches over
the performance of statistical methods could not be reached.

3.2. Oils

Edible oils are frequently subjected to authentication studies, as it is critical to verify the
origin of an oil in order to justify its selling price, verify its beneficial properties, and identify
the markers specific to each oil type to discourage fraudulent practices. For the edible oil
market, a significant issue is related to olive oil authenticity, which, according to the U.S.
Pharmacopeial Convention Food Fraud Database, is the most frequently adulterated food,
even if there are clear regulations and specifications related to this product [59]. Other
high-priced edible oils (e.g., argan, sesame, and sea buckthorn), most of them used as
supplements, are also the subject of counterfeiting. Over the years, in addition to the
authentication of edible oils by GC procedure, which is not an easy and practical solution
(time-consuming, not appropriate for a large number of samples, and uses toxic solvents),
other approaches, such as vibrational or NMR spectroscopy, have been proposed as efficient
alternatives, especially in combination with chemometric or Al methods.

In this context, one study that aimed to provide a simple method for discriminating
edible oils in rapport with their botanical origin and classifying unknown samples applied
principal component analysis (PCA) to several datasets containing one or more parameters
(fatty acid profiles, tocopherol values, PCI, and CIELAB parameters) that are currently used
in the edible oils industry for their evaluation [60]. Other studies presented the efficiency
of a methodology based on various chemometric analyses (PLS, LDA, and SIMCA) and
vibrational spectroscopic data for rapid authentication of edible oils [60-64]. Fatty acid
profiles, obtained by GC/MS, GC, EI-MS, GC-IMS, or triacylglycerol composition, from
supercritical fluid chromatography (SFC) coupled with quadruple time-of-flight mass
spectrometry (Q-TOF-MS), in combination with chemometric methods, have also been
employed to identify efficient discriminant models [30,65-69].

The involvement of Al tools, especially RF classifiers, for edible oils evaluation proved
to be very efficient when applied to fatty acid profiles from GC/MS [30], triacylglycerol
profiling obtained by MALDI-TOF mass spectrometry [70], and Raman spectroscopic
data [71]. For example, in the case of association with the fatty acid profile, the use of the
RF method highlighted the importance of low-abundant fatty acids to the classification,
allowing access to more information about the contribution of each variable involved
in the classification [30]. To eliminate complex analyses, some authors proposed, for
the classification of olive oils (extra virgin, virgin, and refined) or their geographical
origin identification, the use of multi-parametric time-domain NMR relaxometry data
in combination with ML algorithms. Thus, supervised learning models such as neural
networks (NN), logistic regression (LR), naive Bayes, and RF were successfully used
for training the datasets, and the obtained results highlighted increased sensitivity and
specificity for classifying the olive oil samples using NMR relaxation-based detection
(AUC = 0.95) as compared to conventional techniques such as NIR (AUC = 0.84) and UV-
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Vis (AUC = 0.73) spectroscopies [31]. The comparison between PCA and XGBoost ML
methods applied to data resulting from the official analytical methods of the International
Olive Council (IOC) showed good results for ML algorithms, both for the cultivars and
country of origin classifications [32].

Other Al models such as ANN or CNN have also been utilized in edible oils pattern
recognition; thus, ANN in combination with GC analysis was used for vegetable oils
classification [72], while CNN was applied for edible oils low-field nuclear magnetic
resonance (LF-NMR) data analysis, proving to be an efficient automated approach for
edible oils evaluation [73]. A critical review regarding the performances of ANN models in
olive oil production, characterization, and authentication applications was published by
Gonzalez-Fernandez et al. [74].

As a general overview, very few studies were realized for simple edible oils classifica-
tion, with most of them carried out in connection with adulteration evaluation purposes;
the use of Al tools for the analysis of big data, which are more and more frequently used
during the current challenges in authentication studies, proved to be very promising for
authentication studies in comparison with the conventional chemometric ones, especially
in relation to the supply of more accurate prediction results.

3.3. Fruit Juices

The authentication of fruit juices is a complex task due to the wide variability in natural
composition comprised by the sugar content, acidity, and volatile compounds, which can
vary significantly depending on cultivar, ripeness, climate, soil, and processing methods.
Authentication studies are important for determining the characteristics of samples in
order to detect if potential adulterants are added, such as water or colorants; if the product
is mislabeled due to the replacement of an expensive variety with a cheaper one; or if
the declaration of origin is false. In the case of fruit juices, several studies aimed at the
identification of the fruit variety of such products, being motivated by fraudulent practices
involving the mixture of different fruit juices. While the juice-to-juice adulteration matter is
further described in the following section, the classification of fruit juices with respect to
the botanical source and origin is addressed herein.

For fruit juice authenticity, it was observed that the composition of sugar and/or
organic acid provides information about fruit juice origin [33]. Moreover, stable isotope
ratios analysis [75,76], HPLC [77], mass spectrometry [78], elemental fingerprinting [79,80],
NIR [34], and fluorescence [81] analytical techniques have been exploited either on their
own or in corroboration with statistical tools in order to develop fruit juice authentication
models with regard to their varietal and geographical source.

High classification rates were obtained by the authentication models capable of dis-
criminating between laboratory-made fruit juices of apple, pear, peach, grape, sweet
cherry, strawberry, and blueberry, constructed on HPLC data and chemometrics (PCA and
LDA) [33]. This type of analytical data does not require the use of complex methods such as
Al-based techniques for data processing, as the differences between classes are significant.
High accuracies can be achieved just with the use of state-of-the-art processing techniques.
The ripening stage of mango fruits used in juices was also successfully determined by quan-
tifying glucose, fructose, and sucrose from the PLS-processed MID-FTIR-ATR data [82].

Even though promising results have been achieved through the application of sta-
tistical approaches, in recent years, Al techniques have also been employed in juice au-
thentication from a desire to decrease the response time while maintaining or improving
model accuracy. In this regard, near-infrared transflactance spectroscopy with a fiber optic
probe was used to determine individual sugar content and to identify different varieties of
citruses [34]. This time, the PLS statistical method was applied to determine the sugar con-
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tents, while ANN-CA was applied to predict citrus variety within less than one minute [34].
IR spectroscopic data of samples containing different concentrations of apple juice were also
processed using ANN and yielded satisfactory classification results [83]. The models were
improved when a variable selection step was performed by means of genetic algorithms
(GA) in order to decrease the training time [83]. Brendel et al. developed high-accuracy
models for differentiating between different citrus juices using MS or ion mobility spec-
trometry (IMS) data and LDA [78]. A low classification performance was obtained by
the k-nearest neighbors (kNN) and SVM models. Additionally, low- and mid-level data
fusion did not improve the prediction ability as compared to the model constructed on the
single data.

For fruit juice varietal discrimination, recent studies have discussed the application of
ANN on the results obtained by E-nose and E-tongue for developing highly performing
models [84,85] that do not require trained researchers for analytical acquisition or for
data processing.

Based on the reported studies, statistical methods were successfully applied for fruit
juice label authentication. Al did bring some advantages to fruit juice authentication, which
are related to its independence from human input and its more rapid training time.

3.4. Dairy Products

Studies in European countries have indicated the importance of dairy product con-
sumption for the supply of essential nutrients for human health [86,87]. In this regard,
these types of commodities require quality monitoring, and as a result, there has been an
increased interest in developing authentication models for milk, cheese, and other dairy
products, as each matrix requires a special focus on its particular weaknesses along the
production chain. Two main issues that need to be addressed in milk control are related to
(i) the thermal process that milk undergoes and (ii) milk’s animal origin, while for cheese,
the main authentication fraud is related to the false declaration of the production area.

Heat treatment is essential for ensuring the bacteriological safety of milk; however,
uncontrolled high-temperature heat treatments can lead to the degradation of its nutri-
tional value and the loss of aroma or sensory qualities and can even generate harmful
compounds [88]. Because of these, models for the accurate and fast discrimination of
thermally treated milk samples have been developed using different analytical techniques
(Table 1). For processing the data, either statistical methods or Al tools have been used.
No general conclusions could be reached as to which processing method gives the best
performance, as few studies have compared the two data processing approaches, while the
ones applying both statistical and Al methods reported similar performances.

In this regard, Raman spectroscopy paired with PLS-DA allowed discrimination
between raw and pasteurized milk with an accuracy higher than 90% [89]. From our
literature review, the best discrimination model with respect to the degree of heat treatment
applied to milk was achieved when IR spectroscopy was coupled with random forest (RF)
(with an accuracy of 97%), being a slightly more accurate classifier as compared with SVM
and kNN (with accuracies above 90%) and a significant better classifier than LDA (whose
accuracy was only 84%) [35]. MS was observed to be suitable for assessing heat intensity
by identifying differential ions. From this perspective, MALDI-TOF-MS profiling coupled
with fourteen ML algorithms was compared to determine the best model for identifying
the mild thermal processing of milk samples [90]. The top four algorithms with the best
performances were LDA, penalized discriminant analysis (PDA), RE, and SVM, having
accuracy scores above 96%.

Identifying the animal origin of milk is important for maintaining the integrity of
the dairy industry and to protect consumer health. Depending on the animal origin, the
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content of the various milk nutrients can vary; for example, sheep milk is, in general, richer
in proteins (casein), while goat milk contains more potassium (K) [91,92]. As cow milk
production is the largest, the price of this commodity is lower as compared to sheep or
goat milk, so authentication of animal origin of milk can prevent fraudulent partial or total
substitution practices. In this regard, several analytical techniques have been proposed for
the identification of milk types: capillary electrophoresis for the classification of cow and
buffalo milk [93] and mass spectrometry for differentiating milk from eight different animal
species, namely cow, water buffalo, wild yak, goat, sheep, donkey, horse, and camel [94].
These methods do not require statistical or Al treatment of data.

Recently, fast and reliable spectroscopic techniques have been extensively applied in
dairy authentication, resulting in the need of employing statistical methods to process the
spectroscopic data. In this regard, FTIR spectroscopy was successfully used to discriminate
goat from sheep milk [95], buffalo from goat milk [96], and cow from goat milk [97].
Recently, laser-induced breakdown spectroscopy (LIBS) assisted by ML was proposed for
the identification of milk animal origin (cow, goat, and sheep) of 1296 raw liquid milk
samples, obtaining an LR model with an accuracy of 92.8% [98]. As a general tendency,
when spectroscopic data were used to construct milk authentication models, statistical
methods and Al tools proved to have nearly the same efficiency.

The second most consumed dairy product is cheese. Its composition depends on the
animal and geographical origin, the production and condition technology, and ripening
time, all of which give sensorial and nutritional differences among cheeses in terms of taste,
acidity, casein, proteins, calcium, and phosphorus content. Specific European certifications
are given to the officially recognized cheese varieties that have specific production areas,
and include Protected Designation of Origin (PDO), Protected Geographical Indication
(PGI), and Traditional Specialty Guaranteed (TSG) [99]. The certified products present a
higher market value than other similar dairy products and are more susceptible to fraud.
Therefore, developing authentication and traceability models is necessary to protect their
geographical indications and designations of origin [100]. Such reported classification
models have been developed using different analytical approaches in corroboration with
statistical or Al methods. As there are a great number of studies focused either only on sta-
tistical tools or only on Al tools, and very few studies contain a proper comparison between
these two [4], it is difficult to assess whether Al provides any significant improvement to
the authentication model performances.

From this perspective, the origin and authenticity of PDO Polish cheese, Oscypek, was
assessed based on its volatile profile, determined by using a solid-phase microextraction—
mass spectrometry method (SPMEMS) in corroboration with PCA, LDA, SIMCA, and
SVM. For all statistical approaches, the model performances were comparable [4]. The
potential of the volatile profile in the characterization and discrimination of three Italian
pecorino cheeses was assessed using GC-MS combined with HS-SPME and two supervised
multivariate statistical approaches [101], which provided an overall classification accuracy
(in external validation) of 87.5%.

The mineral composition of Brazilian artisanal cheese was determined, and cheese
classification models with high accuracies were obtained by inductively coupled plasma-—
optical emission spectrometer (ICP-OES) and ML algorithms [36]. RF and SVM were
the most accurate models for differentiating between ripened and non-ripened cheeses,
while for the classification of the production region, all the algorithms presented excellent
performance scores [36]. The free volatile carboxylic acids method (FVCAs) was employed
to describe 10 different Swiss cheese varieties, and by using ML techniques, 90% of the test
data was correctly classified according to the cheese type [102]. The chemical parameters
obtained by electrophoresis and chromatography and ANN allowed for an efficient and
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accurate prediction of the production area of the Ossolano cheese [103]. Moreover, the use of
GA optimized the input space, leading to superior recognition accuracies and significantly
decreased learning time [103].

3.5. Meat

Consumers concern regarding the authenticity of meat products along the processing
chain demanded the development of authentication models based on analytical techniques
for quality assessment and composition determination of meat and its derivative products.
Besides the reported studies aiming at adulteration identification and quantification in
meat, a topic that is discussed in the following sections, the classification models proposed
in the literature are mostly related to the discrimination of (i) fresh and thawed meat,
(ii) species differentiation, (iii) meat from different parts of the animal, (iv) meat samples
from distinct geographical origins, or (v) rearing systems (i.e., yard or industrial).

Traditional analytical techniques used for differentiating fresh and thawed meat
include enzymatic-based methods applied to chicken meat [104], DNA [105], spectroscopic
techniques for beef [106] or fish [107] freshness, or MS [37]. Most of these studies obtained
a high efficiency in discriminating the meat types using statistical methods, whereas the
others did not require the use of any data processing strategy. The differentiation of species
has been addressed in many studies involving different techniques, from the traditional
low-detection and reliable methods such as PCR and real-time PCR techniques [108] to the
fast and non-destructive spectroscopic techniques [109,110].

For differentiation among different chicken parts from minced or non-minced samples,
NIR spectrometry paired with distinct supervised methods such as LDA, RE, and SVM
was applied. The reported performances of the classification models did not illustrate the
advantage of applying one algorithm over another [110].

In the recent study by Cristea et al. [38], the application of ANN in corroboration with
isotope and elemental concentrations was shown to be a reliable approach for identifying
the geographical origin of pork meat samples as well as the rearing system. In this case, the
Al-based models outperformed the ones developed using LDA.

The possibility of predicting with high precision the geographical origin or growing
system quality factors of meat based on mass spectrometry techniques and supervised
statistical methods was also illustrated in the studies of Zhao et al. [111].

Based on the performed literature review, it can be highlighted that in the case of meat,
there are numerous studies that have aimed to detect mixtures of distinct meat types or
other adulteration issues, as is highlighted in the following sections.

4. Application of Al in Food Adulteration Detection

A step forward regarding Al application in food science was made through its en-
gagement in fraud control to detect partial or total substitution of certain ingredient(s)
or an undeclared mixture of varieties (Figure 3). This tendency appeared because the
development of reliable models for adulterant detection and quantification has benefited
from increased attention in recent years. These models were developed based on various
experimental data obtained through traditional analytical tools (i.e., MS-based techniques)
and faster and easier-to-use spectroscopies (Table 2). As was previously stated, the optimal
choice of data processing treatment depends on several factors: the investigated food
matrix, the adulteration issue, the analytical method used, and sample distribution. For
this reason, each matrix is discussed separately.
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Figure 3. The main advantage provided by Al over statistical methods in terms of adulteration

percentage estimation.

Table 2. Summary of the employment of Al and statistical methods for identifying or quantifying
adulterants in food products.

Product Aim ExpeS:tl:ntal I;;Z:ﬁ:;g% Performance Ref.
e Overall improved average accurac
Identllean(.)n of sugar MIR PLS-DA, LS-SVM, of the CII\)IN model (9;07%), over Y [112]
addition in honey CNN LS-SVM (91%), and PLS-DA (79%)
Identification and CNNled to a l?etter performa.mce
e compared with chemometrics
quar;tlflcatl;)n of honey PLS-DA, (classification by adulteration
S;I.np es adulterated V.Vlth Raman PCA-LDA, kNN, concentration with a 97% accuracy [113]
1gh-fru;:tose corg, rice, spectroscopy CNN and a 94.79% accuracy for
brlrcleicfloefie,s a?u simultaneously detecting honey
' yrup adulterated with any type of syrup)
é Adutiteratlon. detection of 99.8%, 99.3%, and 98.7% accuracies
ree major sugar NMR LR, DNN, LGBN for the LR, DNN, and LGBM [114]
adulterants: brown rice, L .
. classifiers, respectively
corn, and jaggery syrup
The acacia—colza mixture detection
model allowed an accuracy of 88.6%
Recogni.tior.l and IR or Raman PCA, PLS-DA, (kNN);. the mixture of colza—acgcia
quantitative enectrosco SVM obtained an accuracy of 94.4% [9,115]
mixture detection P Py (LDA); the linden—sunflower honey
blend obtained a 90.7%

(LDA) accuracy
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Table 2. Cont.
Product Aim Expeg:::ntal I;::EZ?&% Performance Ref.
Dgtecpon and Best oil adulteration model
q1.1ant1f.1cat10n of severrfll Raman ML algorithms accuracy of 88.9% on the [7]
edible oil adulterated with ~ spectroscopy KNN model
sunflower oil
Identification and classification of
Adulteration identification different types of edible oils model
= of extra virgin olive oil had an overall accuracy of 94.44%;
© (EVOO) mixed with HPLC SVM SVM model can achieve accurate [11e]
rapeseed and corn oil classification of oil binary blends
with a 1% adulteration level
oil fat(;y ac1d.corr.1pos1t10n The supervised DL model could
eterml’natlon GC-FID GMM predict a purity between 91 [117]
and mixture o
adulteration detection and 99.5%
e HPLC/UV-Vis LDA: 66.7%, LR 93%, NB: 83%,
To distinguish between =y q yypy ¢ PCALDA, RF: 84%, and SVM: 96.7% on the CV
authentic and. af:lulterated QTOF/MS PLS-DA, SVM, RE, set (SVM and RF: 100% accuracy for [118]
lemon juices methods NB, LR both the training and testing set)
Detection and
o L qtua.n t}flcaEOﬁ of i Detection of adulteration with good
§ Juce” f-]ul.c ca ul era 1c(1)n FTIR LDA, SVM, RF results for all tested methods [119]
= (app ¢ piheapple, an (accuracies above 97%)
§= orange juices adulterated
i with grape juice)
Determination of the The PLSR method achieved a better
concentration of result (NMSE: 0.1626) compared to [120
. . NIR 1D and 2D CNN GPR and SVR; /
saccharose in orange juice 1D-CNN model NMRSE value 121]
samples of 0.1569
Detection and Best CART model obtained a high
i performance with an accuracy of
quantification of cheese FTIR CART, MPNN 0.962 and L vt d [122]
whey adulteration in milk ~b- and precision, Selsitivity, an
specificity of 0.965, 0.943, and 0.975
~ Limit of detection below 1 ppm
E Melamine detection in could be reached with a
complex dairy matrixes FTIR Poly-PLS, ANN, multivariate algorithm; [123]
(infant formula, milk LS-SVM the Poly-PLS method was only
powder, and liquid milk) effective for low concentrations of
melamine in milk samples
£ OPLS-DA limited in accurately
5 Detection of non-dairy PCA. OPLS-DA determining or quantitatively
J cream in milk fat cream REIMS NN, DT. SVM ’ analyzing traces of non-dairy cream [124]
5 adulteration T adulteration; ML algorithms
obtained accuracies above 99.0%
= Detection of beef MALDI- Reliable and robust XGBoost
§ adulterated with chicken, TOEMS PLS-DA, XGBoost classification models with a mean [125]
duck, or pork accuracy of 97.4%
4.1. Honey

For honey, which is a very complex matrix, many studies related to its adulteration

have been conducted over the years. A direct addition of different substances or low-cost

varieties in honey can be noted as a general practice found on the market. The indirect

adulteration by the over-feeding of bees with sucrose solutions or crystalline industrial

sugar is also a significant concern, especially because this type of adulteration is very
difficult to detect.
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Thus, the main tendency in honey adulteration is related to the direct addition of
sweeteners such as glucose, fructose, sucrose, maltose, corn, cane, beet, rice, barley malt,
inverted sugar syrups, or even colorants such as ammonia or sulfite ammonia caramel.
Moreover, from an economic point of view, the mixture of high-value honey types (e.g.,
manuka) with more accessible and low-cost honey varieties (e.g., colza, sunflower, etc.)
also has a significant impact on the honey industry. Therefore, many studies have been
conducted for the identification of adulterated samples, some of them using techniques
such as NMR, vibrational, UV-Vis, or fluorescence spectroscopies that allow a more rapid
evaluation of samples. In many cases, the large datasets obtained were analyzed by various
chemometric methods such as LDA, PLS, and SIMCA, allowing the discrimination of
adulterated honey with high efficiency. A comprehensive review of honey adulteration
detection by various methodological procedures was published by Brar et al. [126].

In the last few years, several spectroscopic techniques (NMR, Raman, MIR, or Vis-NIR)
have been used in combination with supervised ML methods for the identification of honey
adulteration by either the direct addition of sweeteners or by mixture creation with cheaper
honey. Thus, the recognition of sugar adulterants in honey was made possible by combin-
ing MIR analysis with a 1D-CNN model when acacia honey was adulterated with corn
syrup [112]; TH-NMR data were also analyzed by LR, DL NN, or light gradient boosting
classifiers for detecting brown rice, corn, or jaggery syrups in adulterated rapeseed honey
samples [114]. Raman spectroscopy in association with CNN also proved its efficiency
in identifying the adulteration of common lychee honey with high-fructose corn, rice,
maltose, or blended syrups [113]. An analysis of the Raman spectral data by convolutional
or probabilistic neural networks (CNN or PNNs) or even SVM models allows adulteration
detection of Suichang native honey with maltose syrup [127].

ML algorithms have also been involved in identifying a more subtle adulteration that
is obtained by mixing two types of honey (Table 2). Thus, using Vis-NIR, Raman, or ATR-
FTIR spectroscopy in combination with various ML models, it has been shown that these
approaches are efficient for detecting the addition of various concentrations of low-cost
honey [9,115,119]. In this context, the identification and quantification of honey-based
adulterants in two types of honey, orange blossom and sunflower, was performed through
Vis-NIR and SVM or RF, and 100% accuracy was reported for both models, but no details
were given about the nature of the honey-based adulterants [119]. Various concentrations of
acacia/colza honey mixtures were detected through the association of Raman spectroscopy
and kNN with an 88.6% accuracy [115]. Also, ML approaches applied to the ATR-FTIR
datasets of acacia/colza or linden/sunflower honey mixtures highlighted the potential
for differentiating these mixtures from the appropriate unadulterated samples, with an
accuracy of 94.4% and 90.7%, respectively, when using the linear discriminant model [9].

Based on the reported results, it has been proven that the application of Al for food
fraud control enables the detection of subtle adulteration types (like those obtained through
the undeclared mixture of honey) and also the estimation of its degree.

4.2. Oils

Possessing a large composition range due to botanical origin, geographic and climatic
environment, seed quality, extraction and refining processes, or storage conditions, edible
oils are essentially composed of triacylglycerols (95-98%) and various mixtures of minor
constituents (2-5%) [128]. Regarding oil adulteration, two practices can be considered
significant: the mixing of cold-pressed oils with refined ones and the substitution of some
valuable oils with more accessible and cheaper oils [129].

Thus, the use of chemometric methods (mainly PCA, (S)LDA, or PLS) in combination
with various analytical techniques allowed the development of reliable tools for oils” in-
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vestigation. The adulteration of oils can be detected either by considering the fatty acid
profiles obtained from GC techniques or other spectroscopic techniques [30,66,129]. Some
methodologies based on electronic nose analysis [130] or low-frequency dielectric spec-
troscopy [131] combine both chemometrics and ANN techniques for oils” evaluation and
prediction of the adulteration degree.

However, in many food adulteration cases, the main issue is strongly correlated
with the lack of information about the type of involved adulterants, and simultaneously,
the control interest is mainly related to the identification of adulterated samples. In this
context, there are many discussions about the efficiency of chemometrics tools based on
binary or multiclass classification methods for authentication/adulteration purposes since
the adulterant is unknown, or there are many distinct adulterants [132]. The proposed
solutions involve the use of one-class classification models, either pure one-class or modified
classifiers, or the involvement of the RF algorithm for one-class problems in combination
with the artificial generation of outliers for model building [132]. A study involving
Raman data and the fatty acid profiles (GC) of several commercial edible oils (i.e., avocado,
canola, coconut, liquid coconut, corn, grapeseed, olive, peanut, soybean, and sunflower)
highlighted the performance of ML-based algorithms (PCA with RF) in comparison with
the standard PCA model for sample classification based on Raman data, while LNR was
the most efficient model for predicting both adulteration cases: avocado oil by canola oil
and olive oil by soybean oil [71].

Considering the identification of various adulterated oil samples with the help of
other Al techniques (either traditional or DL methods), it is worth mentioning that the
involved methodologies make use of different analytical techniques, i.e., IR, Raman, or
fluorescence spectroscopy and even chromatography (either GC or HPLC). An example
involving Raman spectroscopy in association with an ML-based model evidenced the
efficiency of an ensemble-subspace kNN model for identifying the adulteration of sea
buckthorn oil by sunflower and pumpkin oils [7]. The use of SVM algorithms revealed
excellent results for the adulteration of EVOO with rapeseed and corn oils when applied to
the chromatographic data of pigments [116].

A complex study based on the fatty acids profiles obtained by GC-FID techniques,
involving ten edible oil types, demonstrated that DL allows the discrimination of unknown
oils types more efficiently than chemometric methods [117]. This study also reported the
lack of chemometric models’ efficiency if the products” complexity is increased.

Thus, for the oil matrix, these studies clearly confirm that the effectiveness of Al in
comparison to statistical methods directly increases with the adulteration subtlety.

4.3. Fruit Juices

Based on the reported studies presented in Table 2, fruit juice adulteration can occur
from undeclared substance additions (i.e., water and different sweeteners like glucose,
fructose, corn syrup, organic acids, or fruit byproducts) to more subtle adulterations like
those performed through the mixture of a certain fruit juice (i.e., orange juice) with a
cheaper variety (i.e., grapefruit). In this regard, statistical methods have been successfully
employed to develop models that sense the presence of other added substances in the
composition of fruit juices, such as water, sugars, and organic acids [133,134].

Regarding the addition of different substances, a study by Lyu et al. aimed to develop a
new approach combining LC-MS-based metabolomics and to distinguish between authentic
and adulterated lemon juices obtained by the addition of flavonoid markers. PCA and
PLS-DA were applied to observe relevant cluster patterns, while for the prediction of the
adulteration, five ML methods were employed, from which SVM led to the most accurate
predictions [118].
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A DL-based approach for juice quality analysis was reported by Malek et al., who
proposed a three-layer CNN for analyzing the sugar concentration in adulterated orange
juice [120]. The NIR features extracted from the 1D-CNN model significantly improved the
performance parameters when compared to those obtained by AlHichri et al., who used
the state-of-the-art chemometric regression methods on the same sample set [121].

For the detection of pomegranate juice substitution by cheaper apple or grape juice,
Raman spectroscopy in conjunction with PLS and SVR was successfully used with similar
performances [5]. The NIR data processed through LDA for detecting juice-to-juice adulter-
ation proved to be more effective than the SVM model. In contrast, for the quantification
of adulteration, the best performance was obtained by applying SVR, emphasizing the
efficiency in quantifying subtle adulterations [6].

Based on the reported data, we can state that data processed by Al tools for developing
detection and quantification models for fruit juices presented a higher efficiency than the
models based on statistical methods. As compared to the authentication of fruit juices
(discussed in the previous section), where no clear difference between the performances of
these data processing categories could be observed, in the case of adulteration detection,
Al proved to be the most efficient and accurate. This might be linked to the fact that fruit
adulteration, especially in small quantities, is more difficult to detect.

4.4. Dairy Products

In the case of dairy products, the partial or complete replacement of the original
product with more easily available and cheaper substances/products is the most common
procedure performed by defrauders. The addition of other compounds in the composi-
tion of dairy products to improve flavor or properties also represents an authentication
issue [135]. In this regard, more expensive kinds of milk were reported to be adulterated
with different types of cheaper milk, or other compounds, such as whey, neutralizing agents
to mask acidity, melamine, salt, or sugar, were added to mask extra water [136]. Other
fraudulent means consist of the excessive addition of water or the addition of non-milk
fat/oil, which results in a decrease in the nutritional quality of the dairy products.

Cheese whey addition to milk was until recently detected using HPLC, a method that
does not require any statistical treatment for the determination of the adulteration degree
but has as its main disadvantages high costs and complexity of the analytical method. In
recent years, the faster, reliable FT-NIR spectroscopy method together with Al tools, such
as classification and regression tree (CART) and multilayer perceptron, has been proven
capable of detecting the addition of cheese whey to milk with high accuracy [122], thus
mitigating the analytical complexity and associated costs through the enhanced capabilities
of AL

The detection of melamine in dairy products was assessed through a model developed
on NIR/MIR spectroscopies in conjunction with statistical methods (PLS) or ANN and
LS-SVM. A comparison between model performances pointed out the better performance
of Al-based models [123]. Moreover, the models constructed by Neto et al. based on FI-IR
spectroscopy for the detection of sucrose, starch, bicarbonate, peroxide, and formaldehyde
addition led to better accuracies when Al tools were applied instead of supervised statistical
methods (e.g., PLS) [137]. In another study, milk adulteration was detected with 100%
accuracy by combining differential scanning calorimetry with ML tools (gradient boosting
machine (GBM) and multilayer perceptron) [138].

Ayari et al. successfully detected sunflower oil and cow body fat mixed with pure cow
ghee using an E-nose system in corroboration with ANN [139]. In a study that aimed to
distinguish and quantify non-dairy cream present as an adulterant in milk fat cream, both
OPLS-DA and ML algorithms were applied to REIMS lipid fingerprints. The chemometric
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method was limited in identifying or quantitatively analyzing traces of non-dairy cream
adulteration. Thus, a refined classification and quantification with an accuracy above 98%
was achieved when ML models (DT, SVM, and ANN) were employed [124].

Al allowed the development of effective approaches when sensors were involved
in adulteration detection. Thus, Tripathy et al. developed and evaluated a paper-based,
scalable milk pH sensor [140]. The sensor used the RGB values of the colored fiber and Al
algorithms (SVM and kNN) to discriminate pure milk and to quantify the pH value of a
milk sample (with accuracy over 98%) to prevent tamper-proof or spoiled milk adulteration.
Another low-cost, portable Al-based sensor was applied to detect milk adulterants using
the UV-Vis spectra of the analyzed samples [141]. The developed Al-based model was
capable of differentiating between five adulterants, with accuracy scores between 88%
and 92%.

Based on the reported results from the literature, the efficiency of Al for dairy authen-
tication has proven to be more suitable for fraud detection than statistical tools.

4.5. Meat

The development of detection tools for meat products adulterated either with cheaper
or spoiled meat, animal offal, or non-meat materials has high practical importance. The
traditional detection methods such as chromatography and DNA-based techniques [142,143];
protein markers for discrimination of meat species in raw beef, pork, and poultry and their
mixtures [144]; and even spectroscopic techniques such as UV-Vis [145] and Raman [146] have
been successfully applied for adulteration detection and quantification of meat in conjunction
with supervised methods.

As previously highlighted, studies usually choose supervised statistical methods for
model development to discriminate between adulterated and authentic samples. A different
approach was used by Pu et al. when studying 582 samples of beef meat adulterated with
other animals’ meat by using MALDI-TOF MS and XGBoost, developing a model with an
accuracy of 97% [125].

In the field of meat authentication, HSI proved to be an effective analytical tool that
attracted many research groups to pay a lot of attention to the development of such types
of detection approaches. Taking all of this into consideration, this subject is described in
detail in the following section dedicated to image processing.

5. Image Processing

During the last few years, new approaches dedicated to food fraud detection, based on
image processing with the help of A, have revealed amazing results in terms of accuracy
and ease of use. As a function of the matrix type, adulteration issues, equipment types, and
expertise, the association between the method for image acquisition and the Al treatment is
different among the reported studies (Table 3). Moreover, this field is in an emerging phase
and has an amazing potential to develop new, effective, easy-to-use, portable devices for
food control (Figure 4). As the reported results are matrix-oriented, a screening of the latest
results reported for each discussed food item is further presented.
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Table 3. Overview on the application of Al for image processing in the field of food adulteration

detection.
Product Aim Experimental Data  AI Method(s) Performance Ref.
o Detect commonly elusive rice Infrared images 95% accuracy for adulteration
o syrup in honey in concentrations from a detection (testing); 92%
8 . . . CNN i [147]
T as low as 1% in weight as well as thermographic accuracy for quantification
quantify it camera (testing)
EVOQOs classification,
detection, and quantification of
adulterated samples for each Imaces from 98.3% accuracy on test set
individual EVOO; o tical%r;nicrosco o CNN 96.8% accuracy on test set [148]
a global version of the previous P P 96.7% accuracy on test set
models combining all EVOOs into
a single quantifying CNN
CNN (feature
extraction), o )
= Identification and quantification 3D fluorescence SVM 100% accuracy E,SVM)’ RMOSEP
©) . . e between 0.99% and 2.20% [10]
of counterfeit sesame oil spectrum (classification),
i (PLSR) on test sets
PLS (quantifica-
tion)
Identification and quantification
of adulterated EVOO containing Thermographic 97-100% accuracy score on
. . 41 : . CNN [149]
refined olive oil, olive pomace oil, images test sets
or sunflower oil
Discriminate among EVOO, VOO,  Images acquired CNN 82.8% accuracy on an [150]
and LOO samples through GC-IMS independent test set
Images acquired CNN, SVM, 98% accuracy by associating
© Cheese-ripening monitoring by a gho to Eamera kNN, RF, DT, CNN (feature extraction) and [11]
g yap ANN SVM (classification)
6 Adulteration 1c.1ent1.f1cat10n in o SVM, RE, LR,
grated cheese with higher levels Digital images DT kNN 81.7% accuracy score (SVM) [151]

of additives
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Table 3. Cont.
Product Aim Experimental Data  AI Method(s) Performance Ref.
Line-scanning
Detecting adulteration in images of lamb, o
red-meat products beef, or pork SVM, CNNs 94.44% accuracy (CNN) [152]
muscles (HSI)
100% accuracy in detecting
Detection of plant and meat adulteration; 76.1%
] animal adulterants in RGB color imaging CV, sVvM accuracy in identifying the [153]
[} . .
S minced meat type of adulteration; 98%
r-value for quantifying it
TS Overall accuracy of 96.9% and
Re‘l’meaLfoS;ﬁaatlgfkgl'e" lamb, HSI 3D-CNN 97.1% for NIR and Vis [154]
’ P snapshot HSI, respectively
Differentiating distinct minced
meat types (beef, mutton, HSI CNN 94% accuracy [155]

and chicken).

5.1. Honey

Even though several analytical techniques were successfully applied to determine
the honey botanical source (see Section 3), the traditional and certified method remains
melissopalynology, a technique referring to the study and examination of pollen grains
found in honey using light microscopy. However, as the melissopalynological method
is laborious, demands expertise from specialized individuals, and entails a meticulous
counting process, it makes botanical source identification very challenging [156]. Against
this background, DL has unlocked new possibilities for the development of tools able to
automatically and rapidly identify pollen grains, to recognize their type, and to determine,
based on a microscope image, the botanical origin of the honey.

In the field of melissopalynology, several CNN models have been proposed for the
classification of pollen grains with respect to their botanical source, for example, the ones
proposed in the work of Sevillano and Aznarte [157], but only a few have focused on the
automation of pollen grain identification in images of honey analyzed through optical
microscopy [158].

Al-based techniques have also been successfully applied for the detection of subtle
adulterations in honey based on infrared images. The study of Izquierdo et al. investigated
the potential of applying DL for the detection and quantification of rice syrup in honey in
concentrations between 1% and 8% using infrared thermography [147]. For this purpose,
the authors proposed the use of CNN to extract patterns from the thermographic images
recorded during the cooling process of adulterated and pure honey belonging to two
botanical origins, namely acacia and lemon. The ability of the proposed model to identify
honey adulteration with rice syrup independently of the botanical origin corresponded
to a 95% accuracy score on the test set, while a 92% accuracy was obtained for predicting
the concentration of the adulterant in acacia or lemon samples during the test phase. The
lowest performance was recorded in the case of samples consisting of 1% rice syrup; namely,
a true-positive rate of 81% was obtained for this counterfeit honey class during testing.

5.2. Oils

The application of DL for differentiating EVOO, virgin olive oil (VOO), and lampante
olive oil (LOO) samples based on the images acquired through GC-IMS was investigated
by Vega-Marquez et al. [150]. For this purpose, a dataset of 701 images was employed
for the development of a CNN model able to simultaneously discriminate among EVOO,
VOO, and LOO samples with an accuracy of 82.8% over an independent test set. The work
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was reported as a step forward in developing a fast and cost-efficient tool for olive oil
classification with respect to their previous study [159], which illustrated the application of
feed-forward ANN starting from the same dataset but involving the manual extraction of
features from the recorded images.

Another application of DL in the field of oil authentication is represented by the
work [149], who reported for the first time in the literature the study of the thermal
profile of oils during the cooling process with the aim of identifying and quantifying the
adulteration of EVOO with refined olive oil, olive pomace oil, and sunflower oil. Their
motivation was linked to the fact that the composition of triacylglycerols in oil samples
influences their thermal characteristics. A thermographic camera was used to capture
the thermal evolution from 45 °C to 25 °C of both pure and adulterated samples, and the
resulting images were used for constructing distinct CNN models for classifying EVOO
samples and for determination of the adulterant concentration. The reported accuracy
ranged between 97% and 100%, proving the efficiency of the proposed solution.

In their study, Pradana-Lopez et al. [148] highlighted the efficiency of applying CNN
for classifying distinct EVOO and for the semi-quantification of sunflower and corn oil
adulterants in EVOO based on images acquired through optical microscopy. The baseline
of their work corresponded to the idea that each oil possesses a unique rheological property,
which was able to be learned by the CNN model by examining images that captured the
expansion of oil droplets over a 30 min period. The dataset comprises a total of more than
302,000 images of authentic and adulterated oil droplets. The optimized CNN model led
to an impressive accuracy score of 96% in predicting the authenticity or the adulteration
rate (between 2.5% and 10%) of the EVOO despite the simplicity of the data as compared
to other experimental data used in the studies presented in Section 4.

CNN models were also successfully applied to extract features from the 3D fluo-
rescence spectra of several types of vegetable oils to detect and quantify adulterants in
sesame oil samples through the subsequent application of SVM and PLSR, respectively [10].
Through this approach, the SVM model constructed on the basis of the extracted features
allowed the correct detection of adulterated samples in the test set as well as the identifi-
cation of the adulterant type (e.g., rapeseed oil combined with sesame oil essence) with
100% accuracy. However, when the input data corresponded to the emission spectra at
an optimal excitation wavelength, the performance of the SVM model decreased, i.e., 91%
of the samples were correctly predicted for the same task. Lastly, through the application
of DL for spectral feature extraction, PLSR models were successfully developed for the
quantification of sesame oil essence in counterfeit samples. This approach led to RMSEP
values between 0.99% and 2.20%, which proved the reliability of the proposed solution.

5.3. Dairy Products

Al has also been applied for the development of new approaches based on image
processing in the field of dairy product quality control. In this regard, Visconti et al. [151]
proposed the application of digital imaging for the development of a rapid and cost-
effective tool to detect adulteration in grated cheese through the addition of additives
above the approved limit (i.e., cellulose, silicon dioxide, etc.) or other volume enhancement
substances like wheat flour, wheat semolina, or sawdust. For constructing classification
models, mean color histograms were computed based on the acquired digital images.
Several statistical and ML methods were used for this purpose, namely SVM, random trees,
DT, LR, kNN, and PLS-DA. Based on this approach, accuracy scores between 50% and
81.7% were obtained by the constructed models, and the highest prediction performance
corresponded to the SVM model, which was able to identify pure samples or adulterated
samples with a precision greater than 75%.
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Al has also facilitated the development of an efficient, rapid, and non-invasive tool
capable of automatically and precisely determining the degree of ripening of pecorino
cheese based on images captured by a photo camera [11]. The study of Loddo et al.
investigated the application of CNN and traditional ML techniques (i.e., SVM, kNN, RF,
DT, and ANN) using both handcrafted and deep features extracted from the acquired
images [11]. The obtained classification results indicated that the association between CNN
as a deep feature extractor and SVM as a supervised classification technique leads to the
best performance in predicting the degree of ripening (i.e., 18, 22, 24, or 30 days) of pecorino
cheese. Nonetheless, the study highlighted a new possibility for dairy product control
using an accessible means of capturing specific discrimination characteristics, namely a
photo camera.

5.4. Meat

In the field of meat quality and safety assessment, hyperspectral imaging (HSI) has
become a promising and widely applied technology that is able to provide both spectral
and spatial information about the investigated samples in a rapid and non-destructive
manner [160]. HSI systems have been successfully applied for predicting numerous
quality parameters in meat samples, such as pH value [161-163], tenderness [163,164],
color [162], intramuscular fat [161], or marbling [165,166]. Furthermore, HSI has proved
to be a powerful tool for the identification of minced meat adulterated with other meat
types [167,168] and with other substances [169].

Due to the nature of HSI data, the application of statistical or conventional ML meth-
ods like SVM or kNN for constructing meat recognition models is commonly conducted
after a data dimensionality reduction step [24]. In this regard, several approaches have
been investigated, for example, the averaging of the pixel-wise spectra corresponding to
the region of interest (ROI) [170], the application of PCA [171], and spectral angle map-
ping [172], among others. Another solution for overcoming this limitation and enabling
hyperspectral data processing through such statistical or learning-based methods is treating
each pixel-wise spectrum as an independent sample [152].

Even though promising results have been achieved through this type of approach,
recent studies highlight the potential of CNN for the automatic extraction of features
from hyperspectral data, which has been shown to be more efficient in meat quality and
authenticity studies. For example, in the study of Al-Sarayreh et al. [152], the application of
CNN for the extraction of spectral and spatial features allowed the identification of the type
of red-meat muscle, irrespective of the status of meat (i.e., fresh, frozen, thawed, packed, or
unpacked), with an accuracy of 94%. This approach proved to be more efficient than SVM
modeling for the same purpose based on handcrafted features. These results are in good
agreement with the study of Ayaz et al. [155], which emphasized the higher ability of CNN
as compared to SVM or kNN models in differentiating three minced meat types (i.e., beef,
mutton, and chicken). The robustness and time-efficiency advantages of 3D-CNN modeling
for processing HSI data of meat samples were also highlighted by Al-Sarayreh et al. [154].

Nonetheless, ML has been successfully applied in conjunction with RGB color imaging
to detect and quantify plant- and animal-based adulterations in minced meat [153]. A
perfect discrimination between pure and adulterated samples was achieved through the
proposed approach, whereas performances corresponding to up to 76.1% accuracies and
up to 98% r-values were obtained for identifying the type of adulterant and quantifying it.

Based on the reviewed studies, the employment of Al for image processing can be
regarded as a step forward for meat control, allowing a fast and accurate assessment of
both authentication and adulteration.
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While Al-based methods have shown significant potential in food authentication
and quality control studies, several limitations must be acknowledged. Model general-
ization remains a key challenge, as Al models often perform well on specific datasets but
may struggle when applied to new data from different sources, regions, or production
conditions. In order to reach a clear conclusion regarding the advantages of using Al as
opposed to statistical methods, more studies comparing the two tools are required. Another
limitation of Al tools is the lack of standardization in data acquisition protocols, which can
significantly affect model performance and reproducibility across laboratories or industries.

6. Conclusions

Based on the reported studies, Al-based approaches have been increasingly applied for
the differentiation of distinct food commodities with respect to numerous label attributes,
from geographical or botanical origins to fabrication technologies. The involvement of
learning-based techniques in the field of food authentication can be regarded as a logical
progression toward improving the performance of recognition models. However, a clear
conclusion regarding the advantages of these techniques over statistical methods has not
yet been reached, as several studies employing both ML and statistical methods showed
an insignificant performance superiority of the first category, while others showed a slight
decrease in the prediction ability. As a future perspective, more studies involving compar-
isons of these methods performed on the same dataset, highlighting the advantages and
disadvantages, are needed.

For the adulteration detection, it was highlighted that Al is more effective as compared
to chemometrics for the detection of subtle food frauds, like those performed through
the undeclared mixture of different varieties belonging to the same matrix but having
significantly different commercial values (i.e., manuka honey and a common variety).

The use of images in the field of food authentication has uncovered new possibilities for
a fast assessment of several food matrices, including honey, meat, oil, and dairy products. In
this regard, for the development of food recognition models, DL has shown great potential,
especially in deep feature extraction, eliminating the need for specialized personnel while
offering high efficiency and facilitating a rapid and practical analysis for real-time and
scalable deployment.

Based on these considerations, new perspectives are foreseen in the development of
reliable, easy-to-use, portable tools based on the association between images and DL. The
key advantages of the application of Al-based approaches in the field of food quality and
control are related to their feature learning and higher generalization capability as opposed
to conventional statistical methods, their ability to provide more accurate predictions, and,
more importantly, to decrease the dependency on expert knowledge or human involvement.

Additionally, the increase in the developed authentication tools, despite the obvious
positive effects, needs to be approached with caution and, at least in the near future,
only used as a screening method that can substantially increase the number of samples
that can be easily controlled. All suspected samples need to be investigated through the
acknowledged methods for a final verdict. This is because of the natural variability of such
complex matrices as food commodities that require a spatial and temporal representative
learning dataset, which is not trivial to achieve. Nevertheless, the development of screening
tools is a huge step forward that can decrease the dependency on expert knowledge or
human involvement.
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